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Abstract
Phonon exchange is the usual cause of decoherence in atom–surface scattering. By including
quantum effects in the treatment of Debye–Waller scattering, we show that phonon exchange
becomes ineffective when the relevant phonon frequencies are high. The result explains the
surprising observation of strong elastic scattering of Ne from a Cu(100) surface nanotextured
with a c(2 × 2) Li adsorbate structure. We extend a previous model to describe the phonon
spectra by an Einstein oscillator component with an admixture of a Debye spectrum. The
Einstein oscillator represents the dominant, high frequency vibration of the adsorbate, normal to
the surface, while the Debye spectrum represents the substrate contribution. Neon scattering is
so slow that exciting the adsorbate mode has a low probability and is impossible if the incident
energy is below the threshold. Thus, adsorbate vibrations are averaged out. A theoretical
discussion and calculation shows that under such circumstances the vibrations of a light
adsorbate do not contribute to the Debye–Waller effect, with the result that Ne scattering at
thermal energies is quantum mechanical and largely elastic, explaining the high reflectivity and
the diffraction peaks observed experimentally.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rare gas atoms are ideal probes of surfaces and ideal
prototypes for understanding fundamental aspects of atom–
surface interactions. If the surface exhibits a well-ordered,
two-dimensional crystal lattice, then diffraction—a typical
quantum effect—may occur and afford detailed information
on surface crystallography. However, diffraction is usually
strong only for thermal energy helium, due to its small
mass. Inelastic scattering tends to dominate for heavier
probe atoms unless particular experimental conditions, such
as low surface temperatures or grazing incidence reflection,
are adopted [1–14]. Unexpectedly, early neon atom scattering
measurements also revealed diffraction peaks [1, 2], even
though the ordinary Debye–Waller theory predicted them to
be unobservably weak. An extension of that theory was

4 Present address: Stanford Linear Accelerator Center, 2575 Sand Hill Road,
Menlo Park, CA94025, USA.

soon presented [15] (and has since been refined [16–19]5)
and explained the result by showing that the time decay of
the displacement correlation functions causes a decrease of
the effective disorder seen during scattering. Diffraction was
therefore observed simply because thermal energy neon is
relatively slow and the scattering interaction is correspondingly
long. Neon scattering from surfaces has since been studied
by several other groups [3–7, 20], although generally only
for surfaces with simple, fixed properties. Much of the
recent theoretical work has concentrated on either the nature
of the adiabatic potential (see, for example [21, 22]), or in
describing the scattering from a classical perspective [13, 23].
Recently, we described the first experiments of neon scattering
from a metallic thin film [24], where the properties of the

5 We make no use of these theoretical advances here because, on one hand [16]
refers to the different situation of very low temperatures (in particular, T = 0),
and on the other, the more refined theory of [17–19] is fully quantal but only
differs substantially from the semiclassical theory of [15] for very small masses
such as He or H2 [7].
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surface vary strongly with the atom density in the film.
Intriguingly, we demonstrated that changes to surface structure
can also enhance quantum scattering, leading to the unexpected
result that even a room temperature neon beam can diffract
strongly from an overlayer of lithium with little inelastic losses.
The result is counter-intuitive since standard Debye–Waller
scattering models predict that, in comparison with helium–
surface scattering, increasing the probe particle mass and
decreasing the effective surface mass should enhance inelastic
events and thereby strongly attenuate the diffractive intensity.

In the present paper we aim to provide a qualitative
explanation for the quantum scattering of Ne, the experimental
evidence for which is summarized in section 2. We recap the
basic Debye–Waller theory appropriate to atom scattering [15]
in section 3. In section 4 the theory is then extended to consider
quantum corrections and the particular case of an Einstein
model of adsorbate phonons, including the possibility of there
being more than one contribution to the phonon spectrum. This
section expands upon a qualitative model that was previously
only outlined [24]. In section 5 we compare our results with
the experimental data. Our main point is to show that phonon
exchange, which usually causes decoherence in atom–surface
scattering, can become ineffective when the only accessible
phonons have high frequencies. In that case, the scattered
atoms are hardly able to excite or absorb surface phonons, and
therefore remain coherent, resulting in high reflectivity and the
appearance of diffraction peaks.

2. Scattering experiments on adsorbate-covered
copper

The experiment was conducted as outlined in [24] and
the key data are reproduced in figure 1, which compares
the variations in He and Ne reflectivity of Li/Cu(100)
during submonolayer lithium deposition. The clean Cu(100)
substrate, at 0 monolayers (ML) in the figure, showed a
characteristic strong He reflectivity, whilst Ne reflectivity was
attenuated by the usual Debye–Waller scattering, giving a
ratio of He reflectivity to Ne reflectivity of around 5:1—
i.e. in broad agreement with existing theory [15] and the mass-
difference between He and Ne. As lithium was deposited
onto the Cu(100) surface, the He and Ne reflectivities behave
similarly except for a striking, five-fold increase in Ne
reflectivity approaching a coverage of 0.5 ML, where a
c(2 × 2)Li/Cu(100) overlayer forms. Remarkably, the He
and Ne reflectivities are almost identical for this overlayer
structure, and the ratio of reflectivities is measured to be 1.0.
Further investigation revealed that the dramatic increase in
Ne specular reflectivity is due to a near-total extinction of
inelastic scattering [24, 25]. Thus, the loss of a broad angular
distribution of inelastic-scattered Ne gives a concomitant
increase in elastic scattering in the specular direction. The
observed changes in the peak profile, and the emergence of
clear diffraction peaks [24], indicate that the effect cannot
be described within a conventional classical analysis [23].
At higher surface coverages, reflectivity again reduces and
a broad, diffuse scattered Ne signal indicates the return of
multiphonon effects. Thus, the increased quantum character

(a)

(b)

Figure 1. The variation of (a) He and (b) Ne reflectivity of a Cu(100)
substrate during submonolayer Li deposition. The scattering
geometry is indicated in the inset to (a) and a cartoon of the
c(2 × 2)Li/Cu(100) structure (unit cell indicated), which is formed at
a coverage of 0.5 ML, is inset in (b). The data are normalized to
allow direct comparison between the two traces and with respect to
the background-subtracted He reflectivity of the Cu(100) substrate.
Simplistically, reductions in specular intensity are caused by diffuse
scattering from disordered Li adatoms whilst increases in reflectivity
indicate an increase in surface ordering. He and Ne have similar
reflectivities between 0.3 and 0.6 ML, suggesting a lack of inelastic
Ne scattering in this regime. See [24] for more details.

and reduced energy exchange is strongly dependent not only
on the chemical identity, but also on the geometric structure of
the overlayer.

Only the c(2 × 2)Li/Cu(100) structure is relevant here
and, as outlined below, can be associated with a significant
reduction of the Debye–Waller exponent, W , for Ne. Does this
mean that Ne is as quantum mechanical as He, or even more?
Of course not. As will be shown, the effect is a consequence
of the heavier Ne atom taking much longer to cross the atom-
metal potential. In this way, the effects of atomic vibrations
are averaged out and everything happens as if the alkali atoms
were immobile at their equilibrium positions. As a result,
multiphonon effects are quenched and the effective Debye–
Waller exponent is small.

3. Debye–Waller factor in atom–surface scattering

In order to explain the experimental results, we begin
by recapping the model of Debye–Waller attenuation that
has become routine in the theoretical treatment of atom–
surface scattering. In quantum scattering theory the relevant
information is contained in the T-matrix, which here is to
be evaluated between states compounded of a particle state,
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labelled by a wavevector k, and a crystal state |u〉 (where u is
shorthand for a certain set of phonon occupation numbers). It
is convenient to write the initial (ki) and final (k) wavevectors
as subscripts, in such a way that a T-matrix element is written
as 〈v|Tk←ki |u〉 and Tk←ki can be considered as an operator on
the space of crystal states. The differential probability that an
atom scatters into the solid angle d�, losing the positive (or
negative) amount of energy � to the crystal, is given by

dP = L4m2|k|
4π2h̄4|kiz|

∑

u

Pu

∑

v

|〈v|Tk←ki |u〉|2

× δ(Ev − Eu − �) d� d�. (1)

Here, m is the atom mass; L is an appropriate quantization
length; Eu and Ev are the crystal energies before and after
scattering, respectively; Pu is the probability of the crystal
phonon system to be in state u; and the prefactor has been
written in a form appropriate to scattering from surfaces.
Under the strong scattering conditions of atom scattering, the
van Hove transformation (originally introduced for the weak
scattering conditions of neutron scattering [26]) can still be
applied, except that the full T-matrix must be kept, obtaining

dP = L4m2|k|
8π3h̄5|kiz|

d� d�

×
∫

exp

(
− it�

h̄

)
〈T †

k←ki
(0)Tk←ki(t)〉 dt . (2)

Note that for the correlation occurring in (2) the momenta must
be specified; moreover T is not self-adjoint, although the atom-
crystal scattering potential V may be treated as such.

The Fourier transforms occurring in (2) are not well
behaved because the correlation functions do not vanish when
t → ∞. For long times (where the T-matrices become
uncorrelated) the limit is |〈Tk←ki〉|2 and gives rise to elastic
scattering, hence to all diffraction effects, while the remainder
gives rise to inelastic scattering. Focusing on the former, the
probability of an atom scattering elastically into the solid angle
d� is then

dPelastic = L4m2

4π2h̄4 cos θi
|〈Tk←ki〉|2 d�. (3)

Both (2) and (3) are exact, but approximations are required
to use them in practice and the simple, semiclassical eikonal
approximation [11, 15, 27] will be used here:

Tk←ki = −i
h̄2|kiz|
mL3

∫
exp[iη(R, t)] d2 R, (4)

where the phase, η, equals the action, S, divided by h̄, and
the diffraction integral over the surface is a reminder of the
enormously more complex Feynman path integral that would
appear in an exact formulation. The phase η can be split into a
time-independent, perfect crystal contribution η(0) = Q·R+η′
(where h̄Q is the momentum transfer parallel to the surface and
η′ is periodic in R) and a contribution δη(R, t) from the crystal
vibrations, which is linear in the displacements. It is the latter
that is especially interesting for energy exchange. Because of
the mean, 〈T 〉, occurring in (3), the average

〈exp[iδη(R, t)]〉 = exp[−W (R)] (5)

must be considered, where W (R) = 1
2 〈[δη(R)]2〉. Equation (5)

already has a Debye–Waller form, but is still R-dependent.
However, for each individual diffraction peak (corresponding
to the reciprocal lattice vector G), most of the contribution
to the integral comes from those regions of the surface from
which scattering occurs with the momentum transfer h̄Q =
h̄G. Then W is effectively to be computed there, obtaining
WG and a constant exponential factor exp(−WG) that may be
extracted from the integral. Since 〈T 〉 appears squared in (3),
the Debye–Waller factor

e−2WG (6)

is obtained. This is the only effect of the crystal vibrations on
the probability of the G-diffraction.

Now, δη = δS/h̄ and δS, the action fluctuation, equals
(minus) the integral over time of the work fluctuation, i.e. the
sum over the crystal ions of the scalar product of the force Fn

operated by the atom on the n-th ion times the ion displacement
un :

δS = −
∑

n

∫
Fn(t) · un(t) dt . (7)

Thus, WG is written as the integral over collision times τ =
t ′ − t of a product of (tensorial) correlations, with a double
sum over the ions, giving the main result of [15]:

WG = 1

2h̄2

∑

mn

∫
Amn(τ ) : Bmn(τ ) dτ (8)

where the tensors A and B are given by

Amn(τ ) =
∫

Fm(t)Fn(t + τ )dt (9)

and
Bmn(τ ) = 〈um(0)un(τ )〉. (10)

Let us now simplify the above result to consider the
interaction with only one crystal atom at a time and to
assume the same Debye–Waller factor for all diffraction
peaks. These simplifications allow us to consider the
dominant term in the inelastic atom–surface interaction and,
in simple cases, provide a good description of rare gas
scattering [11]. The approximation is particularly appropriate
for the Einstein model developed below, since Einstein
oscillators are independent and thus collisions with multiple
adsorbates account for relatively small contributions. The
Debye–Waller exponent is now obtained by replacing (8) with
the far simpler formula

W = 1

2h̄2

∫
A(τ )B(τ ) dτ, (11)

where, again, A(τ ) refers to the correlation of scattering forces
and B(τ ) to the correlations of crystal vibrations but where the
summation over the entire lattice, (m, n), has been dropped.
The latter term has been calculated previously for a Bravais
lattice of atoms of mass M vibrating perpendicularly with a
vibrational spectrum g(ω) [15, 28] and yields

B(τ ) = h̄

M

∫
g(ω)

ω

(
cos(ωτ)

eh̄ω/kT − 1
+ 1

2
eiωτ

)
dω. (12)

3
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Here, k is Boltzmann’s constant. Classically (i.e. at
temperatures so high that the zero-point vibrations may be
neglected) this may be simplified to

B(τ ) = kT

M

∫
g(ω)

ω2
cos(ωτ) dω. (13)

Even the force correlation A(τ ) can be evaluated explicitly, by
assuming that the atom–surface potential is a Morse potential.
One ends up with:

W = 2π2m2kT

h̄2Mα2

∫
cosh2(πβωτc)

sinh2(πωτc)
g(ω) d(ω), (14)

where m is the mass of the incident particle and α is the Morse
potential parameter, giving a collision time, τc = 1/(αvz),
with an initial perpendicular velocity vz . The arguments of the
hyperbolic cosine and sine differ only by a factor

β = 1 − 1

π
tan−1

√
Ez

ε
, (15)

for an initial perpendicular kinetic energy Ez and potential well
of depth ε [15].

For a fast projectile, ωτc would be small for most of the
phonon spectrum. Then the approximations cosh2(πβωτc) ≈
1 and sinh2(πωτc) ≈ π2ω2τ 2

c would apply, leading to the
conventional expression

W = �2
∫

g(ω)

ω2
dω, (16)

where � = q(kT/2M)1/2, for momentum transfer q: i.e. to the
elementary Debye–Waller theory. For Ne scattering, however,
ωτc is relatively large and (14) rather than (16) should be
expanded for the appropriate phonon density of states. For
example, consider a Debye spectrum with characteristic Debye
angular frequency ωD, leading to Debye–Waller exponent, WD.
Then g(ω) = 3ω2/ω3

D for ω < ωD (and zero otherwise),
giving

WD = 12m EzkT

h̄2 Mω2
D

S (17)

with

S = 1

πωDτC

∫ πωDτC

0

cosh2(βx)

sinh2(x)
x2 dx, (18)

which is the result of the elementary theory modified by a ‘slow
correction term’, S. Analysis of S is provided in [15]: for small
values of πωDτc, it is shown that S ≈ 1, whilst for large values
of πωDτc and shallow potential wells, S ≈ 2/(πωDτc), giving
substantial enhancement of reflectivity.

4. Scattering from an Einstein model

Let us now consider the data of figure 1 and the scattering of
thermal energy Ne from c(2 × 2)Li/Cu(100). We will use an
Einstein model, an approximation that will only describe the
dominant effect but is validated by its ability to describe the
experimental data rather well and its successful application to a
number of related systems with dispersionless modes [29–32].

We therefore model c(2 × 2)Li/Cu(100) as an overlayer of
independent oscillators with a phonon spectrum defined by the
purely perpendicular vibrations of adsorbed atoms, all with a
frequency ωE. A very different frequency spectrum refers to
any parallel motions; however, He scattering measurements on
the related c(2 × 2)Na/Cu(100) system show an extinction of
coupling to low-energy T-mode (parallel to surface) phonons
for the c(2×2) structure [33], so we later consider any residual
coupling to T-modes as a relatively small correction to the
Einstein model. For the moment, let us consider only the
perpendicular oscillations. The spectrum, rather trivially, is a
δ-function:

g(ω) = CEδ(ω − ωE) (19)

where the prefactor, CE, gives a weighting that we set to
one at present and which will be considered in more detail
below. Using (14), the Debye–Waller exponent for the Einstein
oscillator, WE, becomes

WE = Q
2π2m2kT

h̄2 Mα2

cosh2(πβωEτc)

sinh2(πωEτc)
. (20)

Here, we have also introduced a quantum correction factor,
Q( h̄ω

kT , h̄ω
Ez

), which will be discussed in detail shortly. We note
two interesting consequences of (20) at this stage. First, there
is an explicit dependence on the terms α, which defines the
range of the Morse potential, and β , which is determined by
the incident energy in relation to the depth of the well in the
Morse potential. Second, the variation of WE as a function
of the mass of the incident particle differs from that of either
the conventional Debye–Waller exponent, (16), or that for
slow atoms scattering classically from a surface with a Debye
vibrational spectrum, (17). The new mass dependence follows
from (20), noting that β is less than 1, and that, for a given
incident energy, τc is proportional to

√
m. Thus, for small

masses the ratio of the hyperbolic functions simplifies to

2α2 Ez

π2mω2
E

, (21)

and so is proportional to m−1. Meanwhile, the first term
in (20) is proportional to m2, ignoring for the present any
mass dependence in Q. It therefore follows that the Debye–
Waller exponent for scattering from an Einstein oscillator,
WE, is proportional to m in the limit of small mass. For
large masses, however, the ratio of the hyperbolic functions
decreases exponentially, so WE rises to a maximum before
decreasing as mass increases further. This mass dependence is
much stronger than the corresponding behaviour for a Debye
spectrum (17), where the m dependence (by virtue of τc)
of the slow correction term, S, gives a

√
m dependence of

WD at low energies. The weaker mass dependence shown
by (17) was used to explain the early observations of weak Ne
diffraction [15]. The present analysis shows that, for Einstein
oscillators, the intensity of diffraction may actually increase
with the mass of the scattered atom. The physical reason is
simply that a very heavy atom may be so slow that the Einstein
oscillator is averaged out and cannot really be excited by atom
scattering.

4
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The CE parameter appearing in (19) is a pure number
giving the weight of the Einstein mode. It must be stressed
that each phonon mode contributes to W according to a factor
(e · q)2, where e is the polarization (unit) vector of the phonon
and q is the momentum transfer in the scattering process. The
latter is essentially perpendicular to the surface (exactly for the
specular beam, approximately for the diffracted beams), hence
the relevant phonons are those polarized in the perpendicular
direction: CE measures the weight of the Einstein mode
among the perpendicularly polarized phonons. Such weight
is relatively large, since the Einstein mode corresponds to a
frequency independent of the parallel momentum K and to
a purely perpendicular polarization e, while the polarization
of the other modes varies (roughly, e is perpendicular only
in one third of cases). In the c(2 × 2) structure, these other
modes involve largely repulsive interactions among adsorbed
Li adatoms and we suggest that they are also unlikely to be
excited by the slow Ne atoms. A similar effect is seen in He
scattering from c(2 × 2)Na/Cu(100) [33]. These additional
modes would contribute a more conventional Debye–Waller
effect, which usually reduces Ne diffraction considerably with
respect to that of He. A further discussion of this point is given
below.

Since, in the case of Li adatoms, the perpendicular
vibrational frequency is known to be high, ν = 9.3 THz [34],
the semiclassical theory developed above must be modified
and quantum corrections are necessary. A complete quantum
theory of the Debye–Waller factor for an Einstein model was
presented by Kasai and Brenig [29]. Such theory is far from
obvious. Here, we consider a few elementary corrections to
the semiclassical theory in order to provide a more intuitive
description. These corrections still capture some interesting
quantum effects predicted by Kasai and Brenig, in particular
the characteristic (and surprising) decrease of the elastic
scattering intensity at low temperatures.

The quantum effects that we believe to be essential here
are of two types. First, it must be recalled that (13) is only a
classical, or high temperature, approximation to the quantum
expression for B(τ ) given by (12). The latter contains a
complex factor exp(iωτ) in the zero-point term. Only the real
parts of the time integrals contribute, since the elastic intensity
is proportional to | exp(−WG)|2, and the absolute value of an
exponential is the exponential of the real part. Thus, (8) can be
replaced by

Re(WG) = 1

2h̄2

∑

mn

∫
Amn(τ ) : Re(Bmn(τ )) dτ (22)

and equation (11) by

Re(W ) = 1

2h̄2

∫
A(τ ) Re(B(τ )) dτ, (23)

since A(τ ) (or, more generally, Amn(τ )) is real. Re denotes the
real part. Now, in the quantum expression exp(iωτ) may be
replaced by cos ωτ , obtaining Re(B(τ )) as

Re(B(τ )) = h̄

M

∫
g(ω)

ω

{
[exp(h̄ω/kT ) − 1]−1 + 1

2

}

× cos ωτ dω. (24)

A further correction must be applied, depending on the
incident energy, to account for a ‘closed channel’ effect.
Indeed, the Bose–Einstein ‘〈n〉 + 1/2’ term in (24) is
nothing but 1

2 (〈n〉 + 〈n〉 + 1), where the terms 〈n〉 and
(〈n〉 + 1) are immediately recognizable as contributions from
gain (absorption of quanta) and loss (emission of quanta),
respectively. Focusing on the latter, for each component of
the spectrum, no quanta are emitted if the incident energy
Ez is less than the phonon energy, h̄ω, which suggests an
angular dependence in reflectivity as the perpendicular energy,
Ez = E cos2(θ), approaches the threshold. If Ez is larger
than h̄ω, then emission is possible but becomes increasingly
difficult as Ez approaches h̄ω: this can be traced to a factor
k ′

z/kz = (1 − h̄ω/Ez)
1/2 which arises from the phase-space

available for the scattering process (corresponding to the three-
dimensional density of states), and should multiply the loss
term6. Hence, in order to obtain a quantum expression for
W , for a general spectrum we should multiply the loss term
of the integrand occurring in (24) by (1 − h̄ω/Ez)

1/2 and
extend the integral not to infinity, but only to Ez/h̄. For the
gain term, the same argument leads to an enhancement, rather
than to a reduction, the factor being (1 + h̄ω/Ez)

1/2. Of
course, the gain or absorption term is much less important at
relatively low temperatures, because few quanta are present in
equilibrium. For an Einstein model, there is only one frequency
and the situation is more extreme. Following the same line
of reasoning, the loss contribution to W would disappear
whenever Ez < h̄ωE and only the relatively weak Debye–
Waller effect from the gain term would survive. Summarizing
the above arguments and taking the ratio of the integrands
in (13) and (24), we adopt a simple quantum correction factor
for Einstein oscillators, Q(a = h̄ωE/kT, b = h̄ωE/Ez),
where

Q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a

2

[
1

ea − 1

√
1 + b

+
(

1

ea − 1
+ 1

)√
1 − b

]
for b < 1

a

2

[
1

ea − 1

√
1 + b

]
for b > 1.

(25)

Thus, inserting (25) into (20), we finally obtain the quantum
corrected Debye–Waller term for an overlayer of Einstein
oscillators. Clearly, this simple quantum correction term can
also be applied in cases where the spectrum is not a delta-
function. For example, in the case of a Debye spectrum, (25)
should be retained inside the integral term of the classical result
given by (14) and written in terms of spectral component ω

rather than the single-valued ωE.
The above description completes the qualitative descrip-

tion of Ne scattering from c(2 × 2)Li/Cu(100) that was re-
cently presented [24]. However, even in that paper we noted

6 A simple justification for the presence of such a factor is as follows: the
sum of all scattering probabilities (which is 1) may be written as the product
of the Debye–Waller factor exp(−2W ) times exp(2W ). Expanding the latter
factor we get 1 + 2W + 2W 2 + 4/3W 3 +· · ·, where the term W n corresponds
to n quanta exchanged [28]. Thus, the exponent 2W in the Debye–Waller
factor for the loss term is approximately equal to the single-quantum emission
probability (rather than simply proportional to it), and must contain the same
kinematic factor k ′

z as the latter.
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Figure 2. Contour plot of the quantum correction term, Q, described
by (25). The region with Q less than one is shown with grey shading
and corresponds to a decrease of WE with respect to the classical
result given by (20) and therefore an increase in elastic scattering.
The asterisk indicates the experimental conditions of the unusually
high Ne reflectivity in figure 1, predicting a 5-fold increase in
specular reflectivity over the classical expectation.

the approximation to be too severe to agree quantitatively with
the experimental data and we indicated that total decoupling
from lower-energy substrate modes is unlikely to occur. Let us
now explore an extension of the above Einstein model to ac-
count for this contribution. The Debye–Waller exponent, W ,
is linear in the phonon spectrum, so that if both an Einstein
and a Debye spectrum (or any other spectrum) are simultane-
ously present then their respective contributions may simply be
added. This amounts to add a contribution from the Debye part
of the spectrum and it suffices to multiply the contribution by
the weight CD (with CE + CD = 1). For simplicity, we extract
the weighting factor from (19) and add the Einstein and Debye
contributions as:

W = CEWE + (1 − CE)WD. (26)

The Einstein overlayer contribution is given by (20) and (25)
and the Debye contribution is given by (17), (18) and (25),
remembering that whilst ωE denotes a single vibrational term,
ωD scales an entire spectrum. The Debye term has previously
been shown to vary with

√
m. The Einstein term, on the

other hand, is the product of an m2 dependence and hyperbolic
functions that tend, for large arguments, to exp(−c

√
m)

(where, for simplicity, other variables have been collected
together in a single term, c). Thus, the mass dependence of (26)
can become rather complex, depending on the precise values of
CE and the atom–surface potential parameters α and ε.

5. Comparison between theory and experiments

We will now apply the theory developed in section 4 to
the experimental data, considering only those experimental
conditions where the effects of diffuse elastic scattering from

Figure 3. Calculated variation in reflectivity for He (red) and Ne
(blue) scattering from Cu(100) using classical (dashed lines) and
quantum corrected (full lines) forms of (17), as discussed in the text.
Since a Debye spectrum is assumed and includes components at all
energies up to h̄ωD, the difference between the two curves is small
and the quantum correction only has a noticeable effect at very low
beam energies, where the number of accessible phonons becomes
restricted.

aperiodic adatoms and defects can be neglected: the clean
Cu(100) surface and the c(2 × 2) Li overlayer at a coverage
of 0.5 ML. In general, we should first consider the quantum
correction term of (25), the variation of which is plotted in
figure 2 for the Ne–Li system. The shaded region shows
Q < 1.0, which indicates a reduction in WE and hence
a quantum enhancement over the classical result, (20) and
indicates the importance of Q at low energies. The closed
channel effect gives rise to a gradient discontinuity running
horizontally along the line h̄ω/Ez = 1 and splits the quantum
correction into two regimes. The asterisk in figure 2 indicates
the regime in which the experimental data of section 2 were
collected, where the scattered atom has insufficient energy to
excite an Einstein phonon mode, increasing reflectivity. More
interesting behaviour is observed, however, for h̄ω/Ez < 1,
where the scattered atom can donate energy to the surface and
where this loss term rapidly dominates WE. Note in particular
the result that for much of this regime, an increase in h̄ω/kT
(i.e. a decrease in surface temperature) now increases WE, a
rather counter-intuitive result that can be related to a similar
effect found previously by Kasai and Brenig [29].

We may also consider the effect of Q on the scattering
of He and Ne from the clean Cu(100) substrate, where (25)
should be applied to each component in the Debye vibrational
spectrum. The effect is illustrated in figure 3, which plots the
reflectivity of He and Ne at a Cu(100) surface, both with (full
lines) and without (dashed lines) the quantum correction. The
curves of figure 3 were calculated numerically by incorporating
the appropriate form of Q inside the integral of (14), and
using 270 K (h̄ωD = 23.3 meV) for the Cu(100) surface
Debye temperature [35]. The scattering conditions were
those of figure 1. Appropriate values for the atom–surface
interaction potential were obtained by fitting a Morse function
to potentials described in the literature. We used experimental
sources rather than ab initio calculations [21] since the latter
do not provide a good description of the van der Waals
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Figure 4. Calculated variation in reflectivity for He and Ne scattering from (a) c(2 × 2)Li-Cu(100), (b) c(2 × 2)Na–Cu(100) and
(c) K–Cu(100) as a function of perpendicular energy Ez and for three Einstein weighting factors CE, (0, 0.9 and 1.0, as indicated to the right
of each panel). He curves are presented as red dashed lines whilst Ne curves are full blue lines. WD was calculated numerically
using (17), (18) and (25) whilst WE was calculated using (20) and (25), using the fitted potential parameters of table 1 and
h̄ωE(Li) = 38.0 meV; h̄ωE(Na) = 18.5 meV and h̄ωE(K) = 13 meV. See text for details.

interaction. Our fitted parameters are similar to those used
elsewhere [23, 36] and are given in table 1. This calculation
of W neglects some more subtle effects [30, 35, 36] but is
sufficient to demonstrate the effect of the quantum correction.
It is clear that the quantum correction is only significant for
energies below approximately 30 meV for He and 20 meV for
Ne and note in particular that since we plot reflectivity, given
by exp(−2WD), the differences in WD are rather small. For
most of the low-energy range the quantum correction enhances
the reflectivity, similar to the trends evident in figure 2, but the
enhancement is relatively small, being approximately 13% at
its maximum for neon and approximately 4% maximum for
helium. Since there is a full spectrum of phonon energies
present, it is only at very low beam energies that the number
of accessible phonons becomes restricted. Otherwise, and as
might be expected, there is a strong variation in reflectivity
with Ez , with the surfaces all being more reflective for He than
for Ne. As Ez tends to zero, the calculated reflectivity does not
tend to one because a Ne (or He) atom, even if it had no kinetic
energy at long distances, accelerates in the potential well and
therefore is still able to exchange energy with the surface.

In reality, the Q( h̄ωE
kT , h̄ωE

Ez
) term does not dominate the

experimental results for Ne scattering from c(2 × 2)Li–
Cu(100). On one hand, the arguments of the hyperbolic
terms of the Einstein contribution (20) are already sufficiently
large that WE is essentially negligible. This contribution
would be relatively more important for systems where the
Einstein frequency is less extreme. On the other hand, even
if substantial coupling to the substrate Cu(100) modes is
possible, the effect of the quantum correction on WD is weak,
as shown by figure 3. As a consequence, the impact of (26)
is to provide a linear variation of W with CE, ranging from
the clean Cu(100) value (CE = 0) to effectively zero (CE =
1), where complete quantum scattering occurs. This strong
dependence on CE allows an unambiguous fit to the data and
we find that in order to achieve the high reflectivities observed,

Table 1. Fitted Morse potential parameters for He and Ne scattering
from Cu(100), Li, Na and K, using the data provided in [36, 39].

Cu(100) Li Na K

He α (Å
−1

) 1.01 0.84 0.79 0.71
ε (meV) 5.63 1.54 1.08 0.70

Ne α (Å
−1

) 1.07 0.84 0.77 0.66
ε (meV) 11.67 4.34 3.20 2.23

CE must be 0.9 or greater. The effect of CE is explored
further in figure 4, which plots the He and Ne reflectivity of
c(2 × 2)Li-Cu(100) as a function of perpendicular energy, Ez ,
for three CE values (0, 0.9 and 1.0, indicated to the right of
the plot). Also plotted are the expected results for Na and K
overlayers. The Na overlayer is known to adopt a c(2 × 2)

structure [33] whilst K adopts a quasi-hexagonal hexagonal
structure [37] and may therefore behave similarly in Debye–
Waller terms, the principal differences with respect to the Li
system being changes to the interaction potential and to the
Einstein frequencies, ωE. The Einstein frequencies for Na and
K were taken as 18.5 meV and 13.0 meV, respectively [38],
whilst the same details were used for the Cu(100) surface as
outlined above. In order to calculate the data of figure 4 we
obtained values for the atom–surface interaction by fitting a
Morse function to the data of [39] and the fitted parameters
are again presented in table 1. Note that, by using gas-phase
interaction potentials for the alkali metals, we are effectively
neglecting any adsorbate polarization upon adsorption, and
thereby neglecting any resulting increase of ε [21]. Note also
that the calculated trends neglect any additional causes for a
reduction in specular intensity, particularly variations in diffuse
scattering cross-section and elastic scattering into diffraction
channels, which we can expect to occur for Ne scattering from
all three systems [24].

First, let us note that the calculated trends for CE = 0
in figure 4, which correspond to the expectation for the clean

7
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Cu(100) surface, are identical to those of figure 3. At the
other extreme, setting CE = 1 has a dramatic effect in all
cases. For the Li system, CE = 1 leads to a reflectivity that is
independent of Ez in the range studied (both curves overlap at
reflectivity = 1). This invariance is a direct consequence of the
high vibrational frequency of Li and of the inability of Ne or He
to exchange energy with the Einstein oscillations. Very similar
trends are calculated for both Na or K adsorbates, despite
reductions in ωE, suggesting that experimental data from these
systems would be worth collecting. In each case, note that the
Ne curve now lies above the curve for He, a consequence of
the slower Ne atom as it crosses the atom–surface potential
well. The increase is accordance with the discussion of the
unusual m dependence of W in section 4. The importance of
this result now depends critically on the value of CE, which
we believe to be close to 0.9 for the experimental situation
for Li. In this case, the calculations indicate a rather modest
variation in reflectivity with Ez for both He and Ne scattering
from Li. The He reflectivity is predicted to be higher than that
of Ne, but the difference is rather small and agreement with
experiment is therefore excellent. Turning to the calculations
for Na, the difference between He and Ne reflectivities is
more substantial. At CE = 0.9, attenuation due to substrate
phonons still dominates and the He reflectivity remains higher
than Ne reflectivity. Clearly, however, a slight decrease in CE

could reverse that situation. Indeed, in the absence of other
effects, taking CE = 0.9 for the K overlayer results in Ne
reflectivity exceeding He reflectivity for Ez > 40 meV. Such
an observation has never been made experimentally but would
be a remarkable display of the counter-intuitive consequences
of the theory developed in this paper.

6. Discussion

In recent years it has become increasingly clear that a number
of physical phenomena, which usually appear to behave
in a completely classical fashion, do so only because of
decoherence and are ready to show quantum features as soon as
the causes of decoherence are in abeyance. In the case of atom–
surface scattering the main cause of decoherence is phonon
emission (and absorption), which, via a strong Debye–Waller
effect, tends to destroy quantum scattering (i.e. diffraction)
for all but the lightest atoms. Elastic, quantum scattering
was detected many years ago with Ne atoms [1, 2] and more
recently an elastic component has been detected with heavier
noble gases [6–8, 12, 20], especially in cases where phonon
exchange was weak, either because of low temperature, or
because of grazing incidence of the atom beam. The discussion
outlined above shows a more striking effect: for an ordered
adsorbate of Li on Cu the relevant phonons have such a high
frequency that phonon exchange disappears, with the result
that at the coverage where the ordered c(2 × 2) adsorbate
forms, the diffraction of the slow Ne atoms is as strong as
He diffraction. We have shown that this surprising observation
is, in fact, in agreement with theory. Equations (20) and (25)
show that, for an Einstein model, the increase of the Debye–
Waller exponent W due to the m2 factor can be more
than compensated by the exponential decrease related to the

hyperbolic functions. Physically, this reflects the fact that the
Einstein mode, corresponding to the high frequency ωE, is
averaged out and cannot be effectively excited during the slow
scattering process. Another way of expressing this is to say
that the surface scattering is largely adiabatic. Thus, if low
frequency modes are absent or unimportant, W remains small
and the scattering remains quantum mechanical and elastic.
This appears to be precisely the case for the c(2×2)Li/Cu(100)
adsorbate, where low-energy T-mode phonons are weak: a
quasi-Einstein mode survives, but the probability of energy
exchange with a scattered Ne atom is small.

The theory described in section 4, being based on a
pure Einstein model, is necessarily approximate. If taken
literally, it would lead to a paradoxical result that above a
certain atom mass W would decrease and the scattering would
become increasingly quantum mechanical and elastic as the
atom mass increases (and correspondingly, the scattering time
gets longer). Such a paradox would not occur in practice
because the spectrum is never purely Einstein-like and the
contribution of low frequency modes, however small, will
always cause the scattering of heavy atoms to be more inelastic
as the mass increases. To analyse this point, we have discussed
the effect of adding a Debye part to the phonon spectrum,
showing that, although the main points of the present theory
hold, the paradoxes are thereby eliminated. An accurate
comparison with experiments in section 2 is based, indeed,
on such assumption of a phonon spectrum comprising both an
Einstein and a Debye contribution.
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